High-Entropy Alloy Design Assisted by High-Performance Computing

Michael C. Gao1,2, Jeffrey A. Hawk1, and David E. Alman1
1National Energy Technology Laboratory, 2AECOM

Ab Initio Molecular Dynamics Simulations

Out of 383 equimolar compositions (4, 5, 6, 7, 8 and 9-components) in each structure, there are 286 FCC compositions, 4 HCP compositions, and 174 BCC compositions that satisfy those constraints.

Entrophy Sources Calculations

Contact: Michael Gao, NETL/AECOM, 1450 Queen Ave SW, Albany, OR 97321.
Email: michael.gao@comer.net.doe.gov Tel: (541) 967-5869.

High-Entropy Alloys Design Assisted by High-Performance Computing

Michael C. Gao1,2, Jeffrey A. Hawk1, and David E. Alman1
1National Energy Technology Laboratory, 2AECOM

Ab Initio Molecular Dynamics Simulations

Out of 383 equimolar compositions (4, 5, 6, 7, 8 and 9-components) in each structure, there are 286 FCC compositions, 4 HCP compositions, and 174 BCC compositions that satisfy those constraints.

Entrophy Sources Calculations

Contact: Michael Gao, NETL/AECOM, 1450 Queen Ave SW, Albany, OR 97321.
Email: michael.gao@comer.net.doe.gov Tel: (541) 967-5869.